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Summary

Green's function method is applied to the problenm

of dielectric resonators inside conducting cavities
or waveguides. Systematic solutions are derived and
applied to the calculation of resonant frequencies,

radiation quality factors, and coupling coefficients.

INTRODUCTION

In principle, there is no essential difference be-
tween the problems of scattering by dielectric ob-
stacles in free space and in guiding structures.
The only difference is the nature of Green's func-
tion which is a scalar function in free space but a
complicated dyadic one in guiding structures. The
knowledge of the normal waveguide modes systemizes,
however, the problem of finding the dyadic Green's
function. It is the scope of this paper to con-
struct such solutions and to apply technigues used
to study scattering in free space, /1/ - /4/, to
scattering inside waveguides.

The method is not only limited to dielectric ob-
stacles but can also be applied to conducting bodies.
Applications of dielectric obstacles include di-
electric resonators as most important ones. Reso-
nant frequencies, radiation gquality factors, and
various coupling coefficients must be computed. We
will show how this can be done by the present method.

BASIC FORMULATION

Referring to Fig. 1, the total e.m. field E, H in-
side the waveguide can be divided into two parts:
the incident field E}, H! and the scattered field

£°, H® with E%<E-E', HS=H-H . The scattered field

is known to be excited by the polarization current

Fig. 1 Dielectric bedy inside a waveguide

g:jweo(sr—l)g, (1)

where E has to be taken inside the dielectric body.
This current can be shown to possess some important
features. Because of (1), J must not show any di-
vergence. Hence

v-3=0. (2)
In addition, it should satisfy the homogeneous
Helmholtz equation, i.e.

V2 3se k23=0. (3)
3+e k. J

Boundary conditions need not to be specified, be-
cause J will be determined from an integral equation.

The scattered field, which is excited by a current
source, is given by /5/
s

E_

S
S=mL,(3,59,) Ey=mb(3,3) (4)

where subscript "t" denotes the transverse and "z"
the longitudinal coordinate. The operators on the
right hand side of (4) are defined in /5/, /6/, They
contain the normal modes of the embedding waveguide.

Writing the scattered field has

£5-(juwe (e -1)) ta-g! (5)
a T

we find two coupled integral equations for deter-
mining the current source:

. s 1
gt+3w€0(€r-l)Lt(;t,JZ)_Jweo(er—l)gt (6a)

s . i
JZ+Jw€0(€r—l)Lz(gt,az)_gweo(er-l)Ez (6b)
The most suitable way for solving these coupled in-
tegral equations is to apply the moment method by
expanding the unknown current source as
2tz%Amgtm’ Jzz%AmUzm &
where U are known basis functions and Am are un-
known coefficients /7/.

Relations (2) and (3) which must be fulfilled by J
establish a guideline for choosing U . These func-
tions can be chosen as source-free electric fields
inside the dielectric body with half of them satis-
fying electric and the other half satisfying mag-
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netic wall boundary conditions at the dielectric M(fi,Qi)§i=0. (11)
surface. Thus the set of functions (gm) will re- b

present a complete sclution. The coupling coefficients between different re-
sonant modes and a certain incident field can be
CYLINDRICAL DIELECTRIC OBSTACLE WITH ARBITRARY determined by expanding vector X in terms of the

resonant vector X. and solving (10) for the expan-
sion coefficients which are identical to the coup-
ling coefficients.

CROSS SECTION

The determination of the unknown current source J
is rather S).lstetIlatlc %f 1':he dielectric body is CVT NUMERICAL RESULTS
lindrical with its axis in parallel to the waveguide
axis (Fig. 2). Its cross section is arbitrary. Then

: Two problems have been regarded in order to check
(7) can be written as

the validity of our approach.

1. A circular cylindrical dielectric resonator is

\ Y] symmetrically mounted inside a circular cylin-
\Igi“’) Vo 5 S drical metal cavity as sketched in Fig. 4. The
) : resonant frequency of the lowest order resonant
— T Y4 mode is tabulated in Table 1 for different di-
/ 21 22 mensions. The agreement to results taken from

/8/ is satisfactory.

Fig. 2 Cylindrical déelectric body inside
a waveguide
58 . fe— | —
gt_%dz Gm(Z)gm(i)’ JZ_-écm(z)Zth(g). (8)

I means transverse coordinate vector. Furthermore

2 .2 4 A
Vtgm+kmgm=0, Gm:Amexp(sz)+Bmexp(-sz), er >1 w

2 2 2
ym=km—erk0. (9)

Substituting J in the coupled integral equations
(6), it turns out that the second (6b) linearly de-~ l‘ L

pends on the first (6a). Hence (6a) sufficiently

describes the problem. Fig. 4 Circular cylindrical dielectric body inside
/ n a circular metal cavity
~ g dl 2. Now a dielectric pillbox is located inside a rec-
\ tangular waveguide as shown in Fig. 5. The ra-
,’ v S diation quality factor Q_ is tabulated in Table
‘\ (e} C o 2 for two different positions of the dielectric
1 Q resonator. The agreement to experimental results
_/ and those taken from /9/ is again satisfactory.

Fig. 3 The cylindrical dielectric body

L
Referring to Fig. 3, the basis functions U can be I‘_ _.‘
either of TE or of TM type and they can sa?isfy :
either electric or magnetic wall boundary conditims
on the surface. Thus one can construct 4 sets of
basis functions. Following the standard procedure
of the moment method (i.e. testing the integral "—u*ﬂ
equation by these 4 sets), we finally get a matrix |

T

equation of form

M Y (10) ’ D T
Hx=1Y. _ — -——1—@——- b
!
The column vector X contains the unknown expansion l m ('2)
coefficients A and B , while the elements of the :
column vector 'Y are given in terms of the incident ]
i = 9 a/8 a/8

field E*.

Equating det(M) to zero determines the resonant fre- ’ :
quencies f, of the system and the corresponding ra- 1—0./2—0’
diation quality factors Q.. The corresponding re-

sonant vectors li are obtained from the undetermined
system

Fig. 5 Circular cylindrical dielectric resonator
inside a rectangular waveguide. The dimensiors
are as in /9/.
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a(mm) | b(mm) | 1(mm) | L(mm) €, This method | Ref. /8/ | Measured
(GHz) (GHz) (GHz)
10.004 12.7 8.00 15,24| 37.6] 3.372 3.368 3,371
8.661 12.7 8,10 21.10{37.25| 3.932 3.928 3.930
8.001 12,7 6.91 14,22] 37.60 4.193 4,196 4,192
6.804 12.7 5.59 12.19138.20 5.003 4,994 5.001
Table 1: Resonant frequency of the resonance system shown in Fig. 4

Qr This method Ref. /9/ Experimental
position
(1) 740 762 734
(2) 201 218.5 197

Table 2: Radiation quality factor of the resonance system shown in Fig. 5

323



