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Summary

Green’s function method is applied to the problem
of dielectric resonators inside conducting cavities

or waveguides. Systematic solutions are derived and

applied to the calculation of resonant frequencies,

radiation quality factors, and coupling coefficient.

INTRODUCTION

In principle, there is no essential difference be-

tween the problems of scattering by dielectric ob-
stacles in free space and in guiding structures.
The only difference is the nature of Green’s funC-

tion which is a scalar function in free space but a

complicated dyadic one in guiding structures. The
knowledge of the normal waveguide modes systemizes,

however, the problem of finding the dyadic Green’s

function. It is the scope of this paper to con-

struct such solutions and to apply techniques used

to study scattering in free space, lli - /4/, to

scattering inside waveguides.

The method is not only limited to dielectric ob-

stacles but can also be applied to conducting bodies.
Applications of dielectric obstacles include di-

electric resonators as most important ones. Reso-

nant frequencies, radiation quality factors, and

various coupling coefficients must be computed. We

will show how this can be done by the present method.

BASIC FORMULATION

Referring to Fig. 1, the total em. field ~, !! in-

side the waveguide can be divided into two parts:
Hi and the scattered fieldthe incident field ~iJ _

Es, Hs ~s=H-H1.with ~s=E-E1, _ _ The scattered field.—T—
1s known to be excited by the polarization current

Fig. 1 Dielectric body inside a waveguide
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~.jwo(cr-l)~, (1)

where ~ has to be taken inside the dielectric body.

This current can be shown to possess some important

features. Because of (l), ~ must not show any di-

vergence. Hence

y“~.o. (2)

In addition, it should satisfy the homogeneous
Helmholtz equation, i.e.

V2~+erk~~=0. (3)

Boundary conditions need not to be specified, be-

cause ~ will be determined from an integral equation.

The scattered field, which is excited by a current

source, is given by /5/

~;=-Lt(.Jt,Jz), E;=-LZ(+JZ) (4)

where subscript “t” denotes the transverse and “z”

the longitudinal coordinate. The operatOrs on the

right hand side of (4) are defined in /5/, /6/. Thw

contain the normal modes of the embedding waveguicb.

Writing the scattered field has

&s=(jwEo(cr-l ))-l~-~l (5)

we find two coupled integral equations for deter-

mining the current source:

2t+j~Eo(Er-l)Lt(Qt)Jz)=j~Eo (:r-l)E~ (6a)

Jz+jLKo(Er-l)Lz(~t,Jz)=jMEo (Cr-l)E~ (6b)

The most suitable way for solving these coupled in-

tegral equations is to apply the moment method by

expanding the unknown current source as

Jt=;AmQtm, Jz=;AmUzm (7)

where U are known basis functions and Am are un-

known ;~efficients /7/.

Relations (2) and (3) which must be fulfilled by ~

establish a guideline for choosing Y . These ‘unc-
!’tions can be chosen as source-free e ectric fields

inside the dielectric body with half of them satis-
fying electric and the other half satisfying mag-
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netic wall boundary conditions at the dielectric

surface, Thus the set of functions (&lm) will re-

present a complete solution.

CYLINDRICAL DIELECTRIC DBSTACLE WITH ARBITRARY

CROSS SECTION

The determination of the unknown current source ~

is rather systematic if the dielectric body is cy-

lindrical with its axis in parallel to the waveguide

axis (Fig. 2). Its cross section is arbitrary. Then
(7) can be written as

/: 1 -z
1 Z1 Z2

fl(fi,Qi)~i=O. (11)

The coupling coefficients between different re-

sonant modes and a certain incident field can be

determined by expanding vector ~ in terms of the

resonant vector X. and solving (10) for the expan-
sion coefficient;lwhich are identical to the coup-

ling coefficients.

NUMERICAL RESULTS

Two problems have been regarded in Order to CheCk

the validity of our approach.

Fig. 2 Cylindrical dielectric body inside
a wavegulile

Qt=;f Gm(z)~m(~), Jz=-;Gm(z)~tQm(z). (8)

z means transverse coordinate vector. Furthermore

v~gm+k~gm=o, Gm=Qmexp(ymz)+Bmexp(-ymz),

Y:=k:-e k2.
ro

(9)

Substituting g in the coupled integral equations

(6), it turns out that the second (6b) linearly de-
pends on the first (6a). Hence (6a) sufficiently
describes the problem.

I! ~,

Fig. 3 The cylindrical dielectric body

Referring to Fig. 3, the basis functions ~ can be

T“either of TE or of TM type and they can sa lsfy

either electric or magnetic wall boundary conditims

on the surface. Thus one can construct 4 sets of

basis functions. Following the standard procedure
Of the moment method (i.e. testing the integral

equation by these 4 sets), we finally get a matrix

equation of form

M~=Y. — (lo)

The column vector X contains the unknown expansion—
coefficients A and B while the elements of the

‘Y are ~~ven in terms of the incidentcolumn yector _
field =l.

Equating det(M) to zero determines the resonant fre-

quencies f. of the system and the corresponding ra-

diation qu~lity factors Q.. The corresponding re-
sonant vectors X are obt~ined from the undetermined

system
‘i

A circular cylindrical dielectric resonator is

symmetrically mounted inside a circular cylin-

drical metal cavity as sketched in Fig. 4. The

resonant frequency of the lowest order resonant
mode is tabulated in Table 1 for different di-
mensions. The agreement to results taken from

/8’/ is satisfactory.

t-+

Fig. 4 Circular cylindrical dielectric body inside

a circular metal cavity

2. Now a dielectric pillbox is located inside a rec-

tangular waveguide as shown in Fig. 5. The ra-

diation quality factor Q is tabulated in Table
2 for two different positions of the dielectric

resonator. The agreement to experimental results

and those taken from /9/ is again satisfactory.
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Fig. 5 Circular cylindrical dielectric resonator

inside a rectangular waveguide. The dimensio~

are as in /9/.
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a(mm) b(mm) l(mm) L(mm) Sr This method Ref. /8/ Measured

(GHz) (12iiz) (Gtiz)
10.00 12.7 8.00 15.24 37..53 3.372 3.368 ,_ 3.371

8.66
—— .—

12.7 8.lD 21.10 37.25 3.932 3.928 3.930

8.00 12.7 6.91 14.22 37.M 4.193 4.196 - _4.192

6.80 12.7 5.59 12.19 38.m 5.003 4.99b 5.001

Table 1: Resonant frequency of the resonance system shown in Fig. 4

p=
This method Ref. /9/ Experimental

(1) 7110 762 734

(’2) 201 218.5 _ 197

Table 2: Radiation quality factor of the resonance system shown in Fig. 5
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